Definition#

A ring \(R\) is said to be a commutative ring if \(ab = ba\) for all \(a,b \in R\).

Example#

Axiom: \(\mathbb{Z},\; \mathbb{Q},\; \mathbb{R}, \text{ and } \mathbb{C}\) are all commutative rings.

Source#

Gregory T. Lee. Abstract Algebra. 1st ed. Springer Cham, 2018. pp. 136.